Search Results
Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
Search for other papers by Valentina Cirello in
Google Scholar
PubMed
Search for other papers by Marina Lugaresi in
Google Scholar
PubMed
Search for other papers by Claudia Moneta in
Google Scholar
PubMed
Center for Interdisciplinary Research on Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), Liege, Belgium
Search for other papers by Patrice Dufour in
Google Scholar
PubMed
Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
Search for other papers by Alessandro Manzo in
Google Scholar
PubMed
Search for other papers by Erika Carbone in
Google Scholar
PubMed
Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
Search for other papers by Carla Colombo in
Google Scholar
PubMed
Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
Search for other papers by Laura Fugazzola in
Google Scholar
PubMed
Center for Interdisciplinary Research on Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), Liege, Belgium
Search for other papers by Corinne Charlier in
Google Scholar
PubMed
Center for Interdisciplinary Research on Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), Liege, Belgium
Search for other papers by Catherine Pirard in
Google Scholar
PubMed
Objective
The aim was to evaluate the possible association between some endocrine disruptive chemicals and thyroid cancer (TC) in an Italian case–control cohort.
Methods
We enrolled 112 TC patients and 112 sex- and age-matched controls without known thyroid diseases. Per- and poly-fluoroalkyl substances (PFAS), poly-chlorinated biphenyls (PCBs), and dichlorodiphenyltrichloroethane (4,4′-DDT and 4,4′-DDE) were measured in the serum by liquid or gas chromatography–mass spectrometry. Unconditional logistic regression, Bayesan kernel machine regression and weighted quantile sum models were used to estimate the association between TC and pollutants’ levels, considered individually or as mixture. BRAF V600E mutation was assessed by standard methods.
Results
The detection of perfluorodecanoic acid (PFDA) was positively correlated to TC (OR = 2.03, 95% CI: 1.10–3.75, P = 0.02), while a negative association was found with perfluorohexanesulfonic acid (PFHxS) levels (OR = 0.63, 95% CI: 0.41–0.98, P = 0.04). Moreover, perfluorononanoic acid (PFNA) was positively associated with the presence of thyroiditis, while PFHxS and perfluorooctane sulfonic acid (PFOS) with higher levels of presurgical thyroid-stimulating hormone (TSH). PFHxS, PFOS, PFNA, and PFDA were correlated with less aggressive TC, while poly-chlorinated biphenyls (PCB-105 and PCB-118) with larger and more aggressive tumors. Statistical models showed a negative association between pollutants’ mixture and TC. BRAF V600E mutations were associated with PCB-153, PCB-138, and PCB-180.
Conclusion
Our study suggests, for the first time in a case–control population, that exposure to some PFAS and PCBs associates with TC and some clinical and molecular features. On the contrary, an inverse correlation was found with both PFHxS and pollutants’ mixture, likely due to a potential reverse causality.