Search Results
You are looking at 1 - 3 of 3 items for :
- Author: A.S. Paul van Trotsenburg x
- Pediatric thyroid diseases x
Search for other papers by Christiaan F Mooij in
Google Scholar
PubMed
Department of Pediatric Endocrinology, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
Search for other papers by Timothy D Cheetham in
Google Scholar
PubMed
Search for other papers by Frederik A Verburg in
Google Scholar
PubMed
Search for other papers by Anja Eckstein in
Google Scholar
PubMed
Endocrine Unit, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
Search for other papers by Simon H Pearce in
Google Scholar
PubMed
Search for other papers by Juliane Léger in
Google Scholar
PubMed
Search for other papers by A S Paul van Trotsenburg in
Google Scholar
PubMed
Hyperthyroidism caused by Graves’ disease (GD) is a relatively rare disease in children. Treatment options are the same as in adults – antithyroid drugs (ATD), radioactive iodine (RAI) or thyroid surgery, but the risks and benefits of each modality are different. The European Thyroid Association guideline provides new recommendations for the management of pediatric GD with and without orbitopathy. Clinicians should be alert that GD may present with behavioral changes or declining academic performance in children. Measurement of serum TSH receptor antibodies is recommended for all pediatric patients with hyperthyroidism. Management recommendations include the first-line use of a prolonged course of methimazole/carbimazole ATD treatment (3 years or more), a preference for dose titration instead of block and replace ATD, and to avoid propylthiouracil use. Where definitive treatment is required either total thyroidectomy or RAI is recommended, aiming for complete thyroid ablation with a personalized RAI activity. We recommend avoiding RAI in children under 10 years of age but favor surgery in patients with large goiter. Pediatric endocrinologists should be involved in all cases.
Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands
Department of Laboratory Medicine, Endocrine Laboratory, Amsterdam UMC location University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
Search for other papers by Heleen I Jansen in
Google Scholar
PubMed
Department of Computer Science, Vrije Universiteit, Boelelaan, Amsterdam, The Netherlands
Search for other papers by Marije van Haeringen in
Google Scholar
PubMed
Search for other papers by Marelle J Bouva in
Google Scholar
PubMed
Amsterdam Public Health, Amsterdam, The Netherlands
Search for other papers by Wendy P J den Elzen in
Google Scholar
PubMed
Department of Endocrinology and Metabolism, Amsterdam UMC location University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
Search for other papers by Eveline Bruinstroop in
Google Scholar
PubMed
Search for other papers by Catharina P B van der Ploeg in
Google Scholar
PubMed
Department of Paediatric Endocrinology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
Search for other papers by A S Paul van Trotsenburg in
Google Scholar
PubMed
Department of Paediatric Endocrinology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
Search for other papers by Nitash Zwaveling-Soonawala in
Google Scholar
PubMed
Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands
Department of Laboratory Medicine, Endocrine Laboratory, Amsterdam UMC location University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
Search for other papers by Annemieke C Heijboer in
Google Scholar
PubMed
Department of Pediatrics, Division of Metabolic Disorders, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
Search for other papers by Annet M Bosch in
Google Scholar
PubMed
Department of Laboratory Medicine, Amsterdam UMC, Vrije Universiteit, Boelelaan, Amsterdam, The Netherlands
Department of Laboratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
Search for other papers by Robert de Jonge in
Google Scholar
PubMed
Search for other papers by Mark Hoogendoorn in
Google Scholar
PubMed
Department of Laboratory Medicine, Endocrine Laboratory, Amsterdam UMC location University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
Search for other papers by Anita Boelen in
Google Scholar
PubMed
Objective
Congenital hypothyroidism (CH) is an inborn thyroid hormone (TH) deficiency mostly caused by thyroidal (primary CH) or hypothalamic/pituitary (central CH) disturbances. Most CH newborn screening (NBS) programs are thyroid-stimulating-hormone (TSH) based, thereby only detecting primary CH. The Dutch NBS is based on measuring total thyroxine (T4) from dried blood spots, aiming to detect primary and central CH at the cost of more false-positive referrals (FPRs) (positive predictive value (PPV) of 21% in 2007–2017). An artificial PPV of 26% was yielded when using a machine learning-based model on the adjusted dataset described based on the Dutch CH NBS. Recently, amino acids (AAs) and acylcarnitines (ACs) have been shown to be associated with TH concentration. We therefore aimed to investigate whether AAs and ACs measured during NBS can contribute to better performance of the CH screening in the Netherlands by using a revised machine learning-based model.
Methods
Dutch NBS data between 2007 and 2017 (CH screening results, AAs and ACs) from 1079 FPRs, 515 newborns with primary (431) and central CH (84) and data from 1842 healthy controls were used. A random forest model including these data was developed.
Results
The random forest model with an artificial sensitivity of 100% yielded a PPV of 48% and AUROC of 0.99. Besides T4 and TSH, tyrosine, and succinylacetone were the main parameters contributing to the model’s performance.
Conclusions
The PPV improved significantly (26–48%) by adding several AAs and ACs to our machine learning-based model, suggesting that adding these parameters benefits the current algorithm.
Search for other papers by Chantal A Lebbink in
Google Scholar
PubMed
Search for other papers by Thera P Links in
Google Scholar
PubMed
Search for other papers by Agnieszka Czarniecka in
Google Scholar
PubMed
Search for other papers by Renuka P Dias in
Google Scholar
PubMed
Search for other papers by Rossella Elisei in
Google Scholar
PubMed
Search for other papers by Louise Izatt in
Google Scholar
PubMed
Search for other papers by Heiko Krude in
Google Scholar
PubMed
Search for other papers by Kerstin Lorenz in
Google Scholar
PubMed
Search for other papers by Markus Luster in
Google Scholar
PubMed
Search for other papers by Kate Newbold in
Google Scholar
PubMed
Search for other papers by Arnoldo Piccardo in
Google Scholar
PubMed
Search for other papers by Manuel Sobrinho-Simões in
Google Scholar
PubMed
Search for other papers by Toru Takano in
Google Scholar
PubMed
Search for other papers by A S Paul van Trotsenburg in
Google Scholar
PubMed
Search for other papers by Frederik A Verburg in
Google Scholar
PubMed
Search for other papers by Hanneke M van Santen in
Google Scholar
PubMed
At present, no European recommendations for the management of pediatric thyroid nodules and differentiated thyroid carcinoma (DTC) exist. Differences in clinical, molecular, and pathological characteristics between pediatric and adult DTC emphasize the need for specific recommendations for the pediatric population. An expert panel was instituted by the executive committee of the European Thyroid Association including an international community of experts from a variety of disciplines including pediatric and adult endocrinology, pathology, endocrine surgery, nuclear medicine, clinical genetics, and oncology. The 2015 American Thyroid Association Pediatric Guideline was used as framework for the present guideline. Areas of discordance were identified, and clinical questions were formulated. The expert panel members discussed the evidence and formulated recommendations based on the latest evidence and expert opinion. Children with a thyroid nodule or DTC require expert care in an experienced center. The present guideline provides guidance for healthcare professionals to make well-considered decisions together with patients and parents regarding diagnosis, treatment, and follow-up of pediatric thyroid nodules and DTC.