Search Results
Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
Search for other papers by Lars Folkestad in
Google Scholar
PubMed
Search for other papers by Frans Brandt in
Google Scholar
PubMed
Search for other papers by Thomas Brix in
Google Scholar
PubMed
Search for other papers by Marianne Vogsen in
Google Scholar
PubMed
Search for other papers by Lars Bastholt in
Google Scholar
PubMed
Search for other papers by Peter Grupe in
Google Scholar
PubMed
Search for other papers by Jeanette Krogh Petersen in
Google Scholar
PubMed
Search for other papers by Laszlo Hegedüs in
Google Scholar
PubMed
Background: Graves disease (GD) is an autoimmune condition characterized by the presence of antibodies against the thyrotropin receptor (TRAB), which stimulate the thyroid gland to produce excess thyroid hormone. Theoretically, TRAB could stimulate highly differentiated thyroid cancer tissue and/or metastases to produce thyroid hormone. Case: A 68-year-old male, with weight loss and palpitations, was diagnosed with thyrotoxicosis. A later MRI, due to persistent shoulder pain, revealed multiple bone metastases. A biopsy was diagnostic for follicular variant of papillary thyroid carcinoma, and total thyroidectomy was performed. One week after thyroidectomy the patient was admitted with severe hyperthyroidism. TRAB was >40 IU/mL (normal <0.7 IU/mL). High-dose antithyroid drug treatment was followed by high-dose radioactive iodine-131 (RAI) and local radiotherapy covering the right shoulder. Antithyroid drug treatment continued until after the fourth RAI dose. Hypothyroidism did not occur until following the fifth RAI treatment. Summary and Conclusions: We present a patient initially diagnosed with thyrotoxicosis and subsequently with metastatic follicular variant of papillary thyroid cancer. It is suggested that TRAB stimulated the highly differentiated extrathyroidal metastatic thyroid tissue to produce excessive amounts of thyroid hormone, delayed diagnosis, and potential aggravation of the course of thyroid cancer.
Search for other papers by Steen J. Bonnema in
Google Scholar
PubMed
Search for other papers by Elisabeth S. Stovgaard in
Google Scholar
PubMed
Search for other papers by Søren Fast in
Google Scholar
PubMed
Search for other papers by Kasper Broedbaek in
Google Scholar
PubMed
Search for other papers by Jon T. Andersen in
Google Scholar
PubMed
Search for other papers by Allan Weimann in
Google Scholar
PubMed
Search for other papers by Peter Grupe in
Google Scholar
PubMed
Search for other papers by Laszlo Hegedüs in
Google Scholar
PubMed
Department of Clinical Pharmacology, Bispebjerg Hospital
Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Henrik E. Poulsen in
Google Scholar
PubMed
Background: Little is known about the whole body oxidative stress burden following radioactive iodine (<sup>131</sup>I) therapy of thyroid diseases. Methods: We studied 17 patients with benign nodular goiter treated with <sup>131</sup>I therapy. The targeted thyroid dose was 50 Gy in 11 patients pretreated with 0.1 mg of recombinant human TSH (rhTSH). In 6 patients, the applied thyroid dose was 100 Gy without rhTSH prestimulation. Well-established biomarkers of oxidative stress to RNA (8-oxo-7,8-dihydroguanosine; 8-oxoGuo) and DNA (8-oxo-7,8-dihydro-2'-deoxyguanosine; 8-oxodG) were measured in freshly voided morning urine (normalized against the creatinine concentration) at baseline, and 7 and 21 days after rhTSH (not followed by <sup>131</sup>I), and 7 and 21 days after <sup>131</sup>I therapy, respectively. Results: The baseline urinary excretions of 8-oxoGuo and 8-oxodG were 2.20 ± 0.84 and 1.63 ± 0.70 nmol/mmol creatinine, respectively. We found no significant changes in the excretion of any of the metabolites, neither after rhTSH stimulation alone nor after <sup>131</sup>I therapy. Also, no significant differences were found between the rhTSH group (low dose, median <sup>131</sup>I: 152 MBq) and the non-rhTSH group (high dose, median <sup>131</sup>I: 419 MBq; 8-oxoGuo: p = 0.66, 8-oxodG: p = 0.71). Conclusion: Systemic oxidative stress, as detected by nucleic acids metabolites in the urine, is not increased after thyroid stimulation with 0.1 mg of rhTSH, or after <sup>131</sup>I therapy. Our method cannot quantify the oxidative stress induced locally in the thyroid gland, but the study supports that <sup>131</sup>I therapy of benign nodular goiter carries no or only a minute risk of developing subsequent malignancies. It remains to be explored whether our findings also apply to hyperthyroid disorders.