Search Results
Search for other papers by Peter PA Smyth in
Google Scholar
PubMed
Search for other papers by Colin D O’Dowd in
Google Scholar
PubMed
contribute to increased worldwide iodine supply ( 3 , 4 ). The authors are aware that when referring to human intake, the biologically important speciation is iodide (I − ) when referring to other speciations; the collective term iodine is used. Climate
Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
Search for other papers by Yun Jeong Lee in
Google Scholar
PubMed
Search for other papers by Young Hun Choi in
Google Scholar
PubMed
Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
Search for other papers by Youn-Hee Lim in
Google Scholar
PubMed
Search for other papers by Bung-Nyun Kim in
Google Scholar
PubMed
Search for other papers by Johanna Inhyang Kim in
Google Scholar
PubMed
Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
Search for other papers by Yun-Chul Hong in
Google Scholar
PubMed
Department of Internal medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
Search for other papers by Young Joo Park in
Google Scholar
PubMed
Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
Search for other papers by Choong Ho Shin in
Google Scholar
PubMed
Department of Internal medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
Search for other papers by Sun Wook Cho in
Google Scholar
PubMed
Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
Search for other papers by Young Ah Lee in
Google Scholar
PubMed
Introduction Adequate iodine intake is essential in growing children because both iodine deficiency and excess can adversely affect thyroid function ( 1 , 2 ). Thyroid volume (Tvol) and goiter rate have been regarded as indicators of the long
Search for other papers by Rodrigo Moreno-Reyes in
Google Scholar
PubMed
Search for other papers by Ulla Feldt-Rasmussen in
Google Scholar
PubMed
Search for other papers by Agnieszka Piekiełko-Witkowska in
Google Scholar
PubMed
Search for other papers by Adriana Gaspar da Rocha in
Google Scholar
PubMed
Search for other papers by Corin Badiu in
Google Scholar
PubMed
Search for other papers by Josef Köhrle in
Google Scholar
PubMed
Search for other papers by Leonidas Duntas in
Google Scholar
PubMed
Introduction Why is European Chemicals Agency’s (ECHA) statement not considered scientifically accurate by the thyroid community? The ECHA statement made in September 2022 ( 1 ) concluding that iodine is an endocrine disruptor (ED) and the
Search for other papers by Line Tang Møllehave in
Google Scholar
PubMed
Search for other papers by Nils Knudsen in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Allan Linneberg in
Google Scholar
PubMed
Search for other papers by Inge Bülow Pedersen in
Google Scholar
PubMed
Search for other papers by Gitte Ravn-Haren in
Google Scholar
PubMed
Search for other papers by Anja Lykke Madsen in
Google Scholar
PubMed
Search for other papers by Allan Carlé in
Google Scholar
PubMed
Search for other papers by Charlotte Cerqueira in
Google Scholar
PubMed
Search for other papers by Anne Krejbjerg in
Google Scholar
PubMed
Search for other papers by Lone Banke Rasmussen in
Google Scholar
PubMed
Search for other papers by Lars Ovesen in
Google Scholar
PubMed
Search for other papers by Hans Perrild in
Google Scholar
PubMed
Department of Internal Medicine, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark
Search for other papers by Lena Bjergved Sigurd in
Google Scholar
PubMed
Search for other papers by Betina Heinsbæk Thuesen in
Google Scholar
PubMed
Search for other papers by Pernille Vejbjerg in
Google Scholar
PubMed
Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Torben Jørgensen in
Google Scholar
PubMed
Introduction: iodine fortification in Denmark The Danish investigation on iodine intake and thyroid disease (DanThyr) was the first extensive examination of the effects of an iodine fortification (IF) program ( 1 ). IF is implemented to obtain
Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
Search for other papers by Ying Sun in
Google Scholar
PubMed
Search for other papers by Di Teng in
Google Scholar
PubMed
Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Heping District, Shenyang, Liaoning, China
Search for other papers by Lei Zhao in
Google Scholar
PubMed
Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
Search for other papers by Xiaoguang Shi in
Google Scholar
PubMed
Search for other papers by Yongze Li in
Google Scholar
PubMed
Search for other papers by Zhongyan Shan in
Google Scholar
PubMed
Search for other papers by Weiping Teng in
Google Scholar
PubMed
(SCH) ( 3 ). Animal studies have shown that aging is associated with a low thyroid state and organ-specific sensitivity to thyroxine ( 4 ). Previous studies have suggested that age has an important influence on TH sensitivity ( 4 ). Iodine is the main
Search for other papers by Temesgen Muche Ewunie in
Google Scholar
PubMed
Search for other papers by Robel Hussen Kabthymer in
Google Scholar
PubMed
Search for other papers by Samrawit Hailu in
Google Scholar
PubMed
Search for other papers by Moges Mareg in
Google Scholar
PubMed
Search for other papers by Tesfa Mengie in
Google Scholar
PubMed
Search for other papers by Daniel Sisay in
Google Scholar
PubMed
Search for other papers by Getachew Arage in
Google Scholar
PubMed
Introduction Iodine is present in the body in scarce amounts ( 1 ) and is an essential micronutrient that is required for the production of thyroid hormone which is vital for immune response, growth, and brain development of the fetus, infants
Search for other papers by Jean-Charles Martin in
Google Scholar
PubMed
Search for other papers by Thierry Pourcher in
Google Scholar
PubMed
Search for other papers by Guillaume Phan in
Google Scholar
PubMed
Search for other papers by Julien Guglielmi in
Google Scholar
PubMed
Search for other papers by Caroline Crambes in
Google Scholar
PubMed
Search for other papers by François Caire-Maurisier in
Google Scholar
PubMed
Search for other papers by Dalila Lebsir in
Google Scholar
PubMed
Search for other papers by David Cohen in
Google Scholar
PubMed
Search for other papers by Clément Rosique in
Google Scholar
PubMed
Search for other papers by Lun Jing in
Google Scholar
PubMed
Search for other papers by Maha Hichri in
Google Scholar
PubMed
Search for other papers by Lisa Salleron in
Google Scholar
PubMed
Search for other papers by Jacques Darcourt in
Google Scholar
PubMed
Search for other papers by Maamar Souidi in
Google Scholar
PubMed
Search for other papers by Marc Benderitter in
Google Scholar
PubMed
years ( 1 ). It aimed to define the conditions for repetitive administration of potassium iodide (KI) in order to protect the population undergoing prolonged exposure to radioactive iodine in a nuclear or radiological accidental situation. The results
Search for other papers by Laura Tosatto in
Google Scholar
PubMed
Search for other papers by Francesca Coscia in
Google Scholar
PubMed
by the thyroid in a much larger amount than T3 (the active hormone) and can be converted to it by de-iodination ( 3 ). T3 activates the transcription of a set of pivotal genes in target tissues (e.g. growth factors) upon binding to the nuclear thyroid
Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
Search for other papers by Valentina Cirello in
Google Scholar
PubMed
Search for other papers by Marina Lugaresi in
Google Scholar
PubMed
Search for other papers by Claudia Moneta in
Google Scholar
PubMed
Center for Interdisciplinary Research on Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), Liege, Belgium
Search for other papers by Patrice Dufour in
Google Scholar
PubMed
Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
Search for other papers by Alessandro Manzo in
Google Scholar
PubMed
Search for other papers by Erika Carbone in
Google Scholar
PubMed
Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
Search for other papers by Carla Colombo in
Google Scholar
PubMed
Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
Search for other papers by Laura Fugazzola in
Google Scholar
PubMed
Center for Interdisciplinary Research on Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), Liege, Belgium
Search for other papers by Corinne Charlier in
Google Scholar
PubMed
Center for Interdisciplinary Research on Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), Liege, Belgium
Search for other papers by Catherine Pirard in
Google Scholar
PubMed
thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new american thyroid associations . Thyroid 2010 20 1341 – 1349 . ( https://doi.org/10.1089/thy.2010.0178 ) 39